

Canadian Boiler Society 2019 Education Days

Modern NOx Reduction Strategies

Bob Langstine

Regional Sales Manager, Eastern US & Canada

Zeeco, Inc.

Emission Limitations

What factors determine achievable emissions?

- NOx
 - O_{2.} Excess Air
 - Combustion Temp.
 - Reaction with Nitrogen
 - Lowering CO
- CO
 - O_{2,} Excess Air
 - Combustion Efficiency
 - Low NOx and FGR
 - Combustion Temp.

- VOC
 - Combustion Efficiency
 - Combustion Temperature
- SOx
 - Fuel Dependent,
 - Sulfur
 - Particulate

Emissions – NOx

Fuel NOx

Fuel Bound Nitrogen (FBN)

- Highly dependent on the concentration of fuel bound nitrogen
- Virtually all becomes NOx

Emissions – NOx

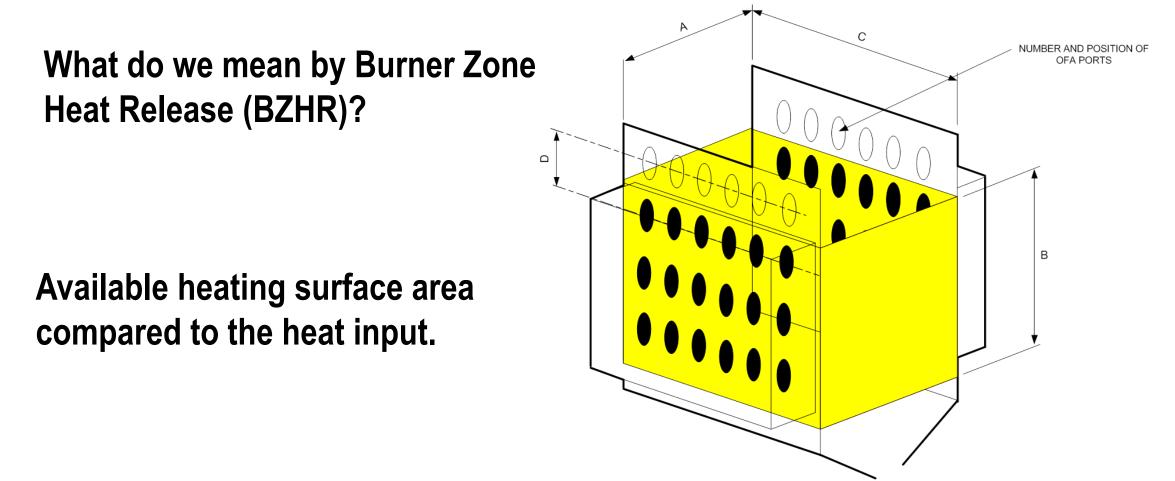
Prompt NOx

• Formed in the very early portion of the flame zone where air and fuel first mix or react. The reaction occurs in a part of the flame where little, if any, Thermal NOx is formed.

Emissions – NOx

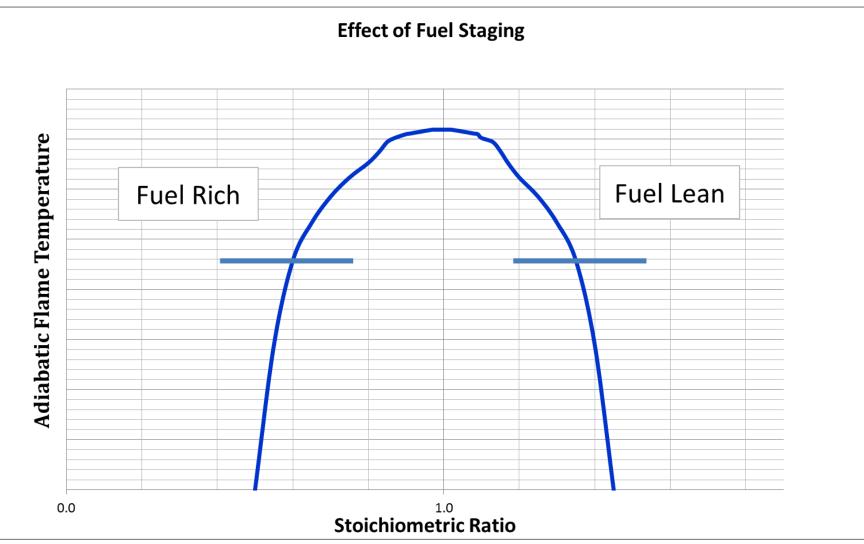
Thermal NOx

- For most gaseous fuels, the major concern is Thermal NOx.
- Thermal NOx formation rates are highly sensitive to peak flame temperatures.
- Thermal NOx begins to form at 2800°F (1538°C)
- Above 3200°F (1760°C), the NOx formation rate doubles for every 190°F (88°C) increase in flame temperature.



Emission Conversion Chart

			• Burner	S							
			• Flares				COM	MON E	EMISS	SION	
			• Inciner	ators			CON	/ERSIC	ON CH	IART	
			Combustion System		stems						
TO CONVERT		To:									
		Multiply by									
	From		NOx	SOx	со		lb/MMBtu		g/GJ		
		mg/Nm ³	ppm	ppm	ppm	COAL _a	OIL _b	GAS_{c}	COALa	OIL _b	GAS_{c}
	mg/Nm ³	1	0.487	0.350	0.800	6.65E-04	6.25E-04	5.92E-04	0.286	0.269	0.255
NO _x	ppm	2.053	1			1.36E-03	1.28E-03	1.21E-03	0.587	0.552	0.523
SOx	ppm	2.858		1		1.90E-03	1.78E-03	1.69E-03	0.818	0.768	0.728
СО	ppm	1.250			1	8.30E-04	7.80E-04	7.39E-04	0.358	0.336	0.318
	COALa	1503	734	527	1205	1			429.95		
lb/MMBtu	OIL _b	1600	781	561	1283		1			429.95	
	GAS_{c}	1689	824	592	1353			1			429.95
	COAL _a	3.495	1.702	1.223	2.797	2.33E-03			1		
g/GJ	OIL _b	3.721	1.813	1.302	2.978		2.33E-03			1	
	GAS _c	3.928	1.913	1.374	3.143			2.33E-03			1
Notes:											
a: COAL: Flue	Gas dry 3% e	xcess O ₂ ; Assun	nes 263 ds	m ³ /GJ - 97	80 dscf/N	MBtu - Reference	ce EPA 40CFR p	ot. 60, App. A, N	<i>l</i> leth. 19		
a: COAL: Flue Gas dry 3% excess O ₂ ; Assumes 263 dsm ³ /GJ - 9780 dscf/MMBtu - Reference EPA 40CFR pt. 60, App. A, Meth. 19 b: OIL: Flue Gas dry 3% excess O ₂ ; Assumes 247 dsm ³ /GJ - 9190 dscf/MMBtu - Reference EPA 40CFR pt. 60, App. A, Meth. 19											
c: GAS: Flue Gas dry 3% excess O ₂ ; Assumes 234 dsm ³ /GJ - 8710 dscf/MMBtu - Reference EPA 40CFR pt. 60, App. A, Meth. 19											
STANDARD CONDITIONS (IMPERIAL); 68°F, 1 atm.											
NORMAL CONDITIONS (SI); 32°F, 1 atm.											



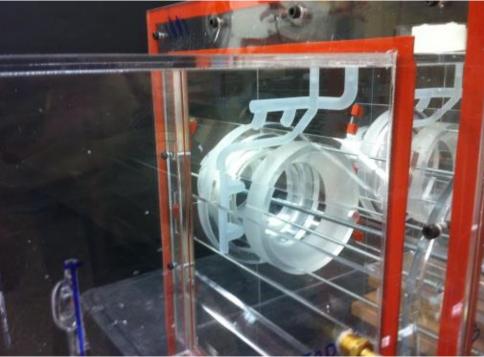
Burner Zone Heat Release - BZHR

> Effect of Fuel Staging

NOx Correlation

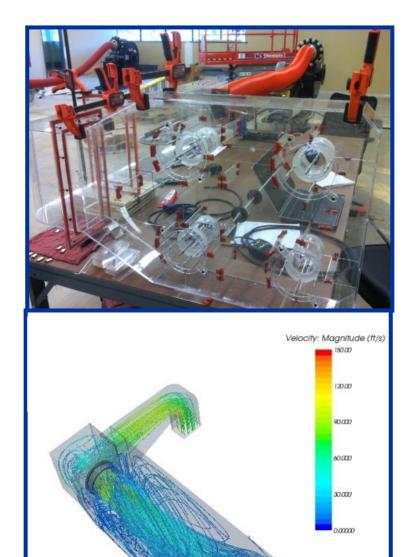
2019 Education Days London, Burlington, Kingston, Montreal, Halifax

Acid Dew Point

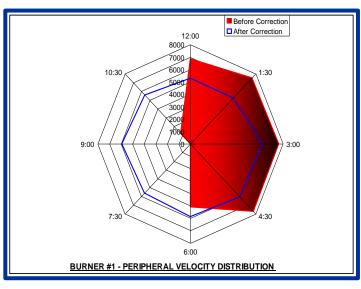

310 300 $\mathbf{290}$ ACID DEW POINT, F 260 270 260 250 2.5 0.5 1.5 3.5 Ó 2. 3. ٩. % S IN FUEL

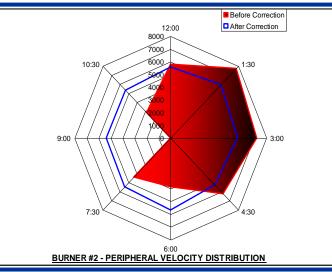
ACID DEW POINT ve %S in FUEL

Proper Combustion Air Flow


- 95% OF MASS FLOW IN THE COMBUSTION PROCESS IS AIR
- THREE FUNDEMENTAL ASSUMPTIONS OF BURNER DESIGN
 - 1. Balanced airflow to all burners +/-2%
 - 2. Even peripheral distribution around each burner entrance +/-15%
 - 3. No swirl entering the burner, other than what's imparted by the burner itself

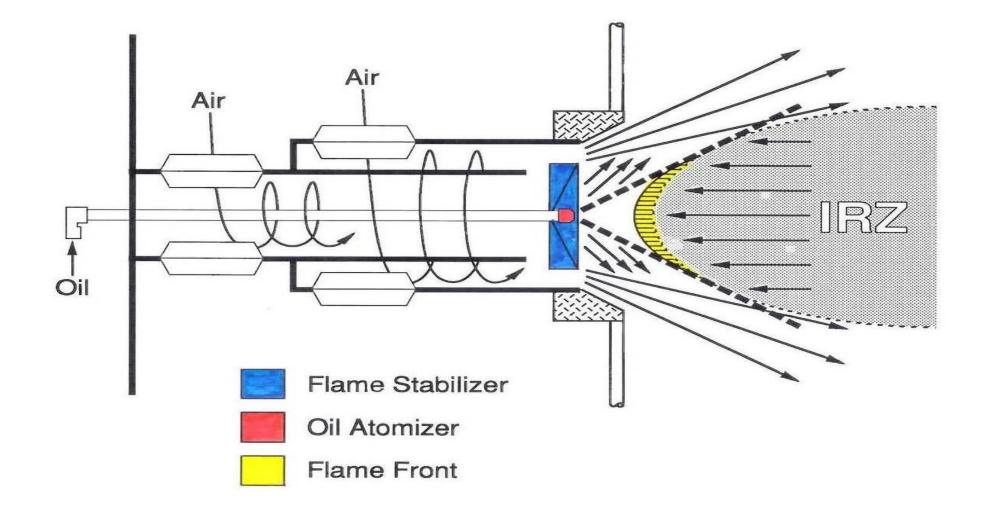
Physical Flow and CFD Modeling


- Burner-to-burner balance for multi-burner installations
- Lowers excess air requirements
- Used on all burners / OFA / FGR systems
- Required for all fuels and unit types
- Lowers CO₂ footprint
- Minimizes startup and commissioning times
- Can Eliminate Combustion Vibration

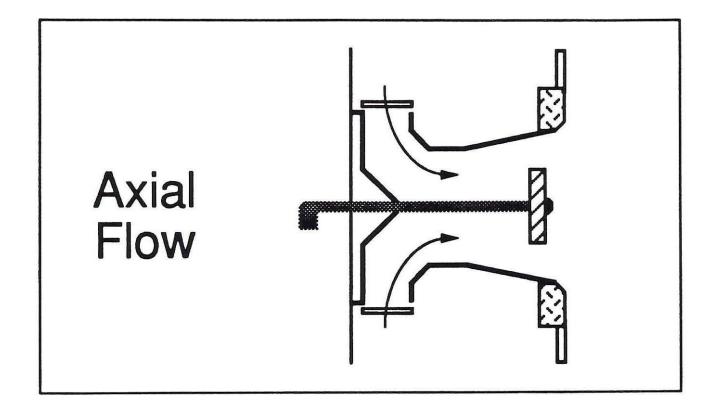


ZX.

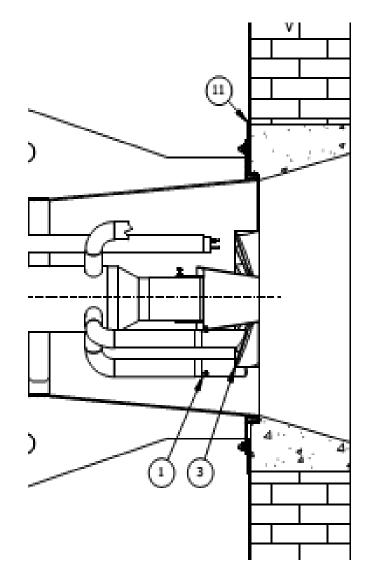
Airflow Imbalance = Flame Imbalance = Emissions



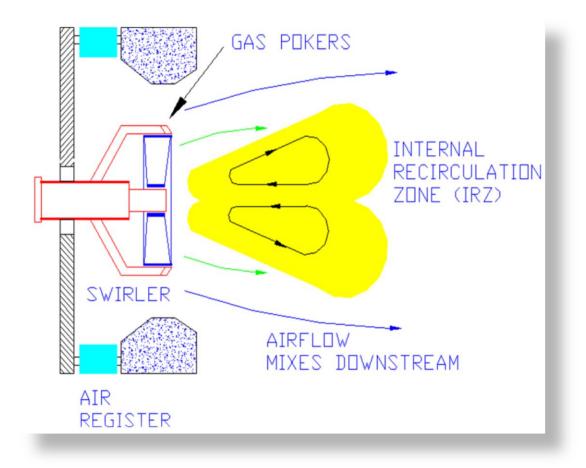
2019 Education Days London, Burlington, Kingston, Montreal, Halifax



Dual Register Burner


Axial Flow Register

Low NOx Burner


- Players: Variflame, DLN, DeltaNOx, MSC, DFL, GB.....
- Low NOx Design:
 - 50-80ppm w/no FGR
 - 30ppm with 15% FGR
 - 100ppm CO
- Staged Gas within throat for NOx Reduction

Burner Stabilization

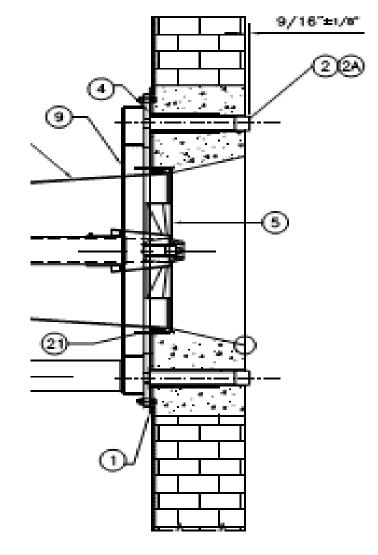
- Swirling air produces a vortex at the burner outlet which induces hot furnace gases to flow back towards the burner
- This is referred to as the Internal Recirculation Zone (IRZ)
- The IRZ creates burner stability

Airflow Dynamics

- Burner Swirl Number (Sn) represents the ratio of tangential momentum to axial momentum
 - Sn = <u>Tangential Momentum</u>
 - Axial Momentum
- A ratio of 0.6 is required to form an IRZ

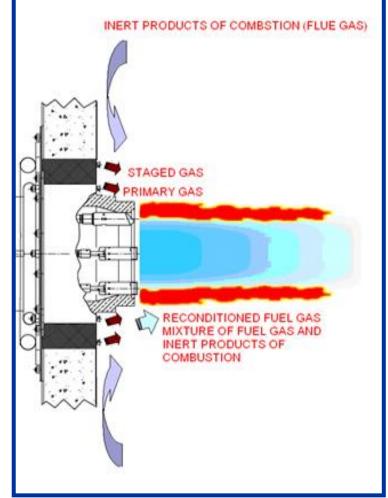
Airflow Dynamics

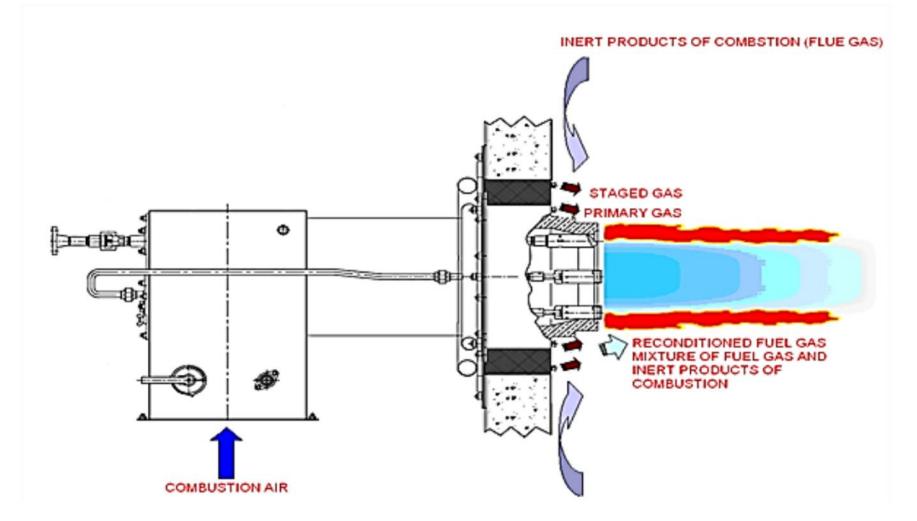
• Avoid airflow disruptions


Defining Ultra Low NOx

- From a combustion point of view
 ULTRA LOW NOx = CONTROLLED INSTABILITY
- A very important point to be aware of and take into consideration. The significance of significant digits
 - EPA MACT Requirement is 0.01 lb./MMBtu
 - 0.01 does not necessary equal 0.010
 - 9 ppm equals 0.011 (9 ppm NOx = 23.22 mg/Nm³)
 - 0.010 equals 8 ppm
 - 0.01 technically equals anything up to 0.0149 (12 ppm) (12 ppm or 24mg/Nm3)
 - DON'T PAINT YOURSELF INTO A BOX WHEN APPLYING FOR PERMITS!

► Ultra Low NOx Burner


- Players: QLN, Variflame-II, Ecojet, Freejet-V
- Center Fired Gas for Stability
- Staged Outer Gas for NOx Reduction
- Stages fuel and air, and uses furnace gases to Dilute fuel
- Fuel gas is mixed with inert products of combustion before combustion occurs, thus "reconditioning the fuel gas"

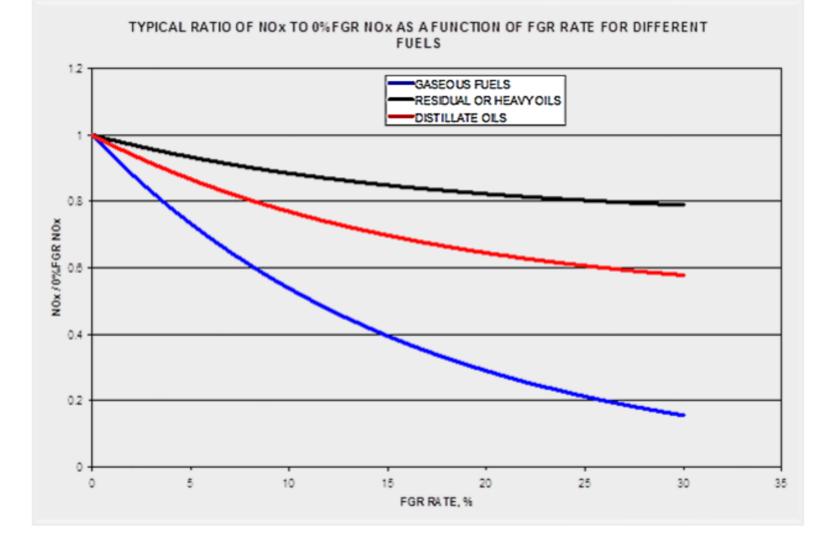

Ultra-Low NOx Burner Technology

- Applicable to virtually any boiler type, industrial and power applications
- Lowest NOx / 10-15% Excess Air
 - 9 ppm NOx with **<u>12-18% external FGR</u>**
 - 30 ppm NOx with **no external FGR**
 - 50 to 100 ppm CO
 - Up to 360 MMBtu/hr in a single burner
- Can use Internal and External FGR
- Multi-fuel Capability
- Turndown: 4 to1 on emissions, 10 to 1 on operation

Ultra-Low NOx Burner Technology

Flue Gas Recirculation

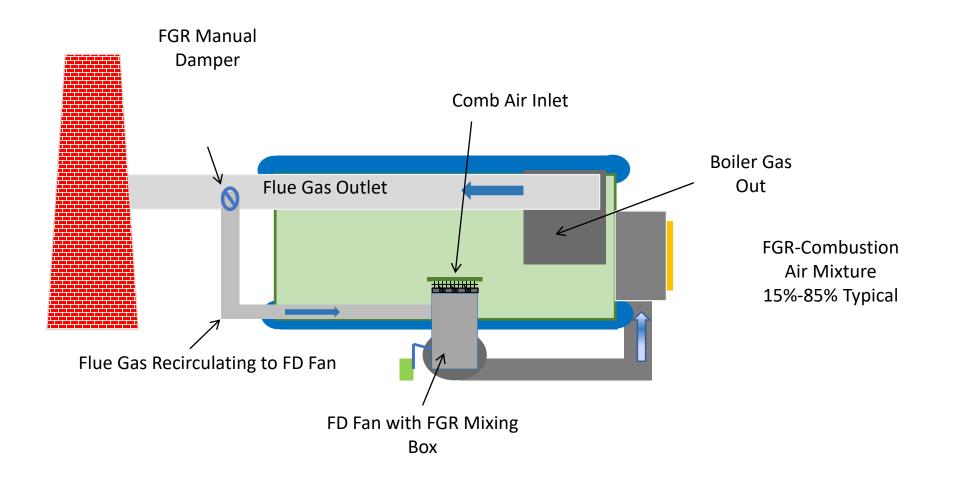
- A portion of the exhaust gas is directed back to dilute the air/fuel stream of the burner in order to:
 - Absorb some of the heat of combustion
 - Reduce adiabatic flame temperature, and thereby reducing Thermal NOx
- FGR is most often expressed as a percent and refers to the mass percent of the flue gas exiting the stack that is being directed back to the burner



Flue Gas Recirculation (FGR) - Lower Thermal NO_x

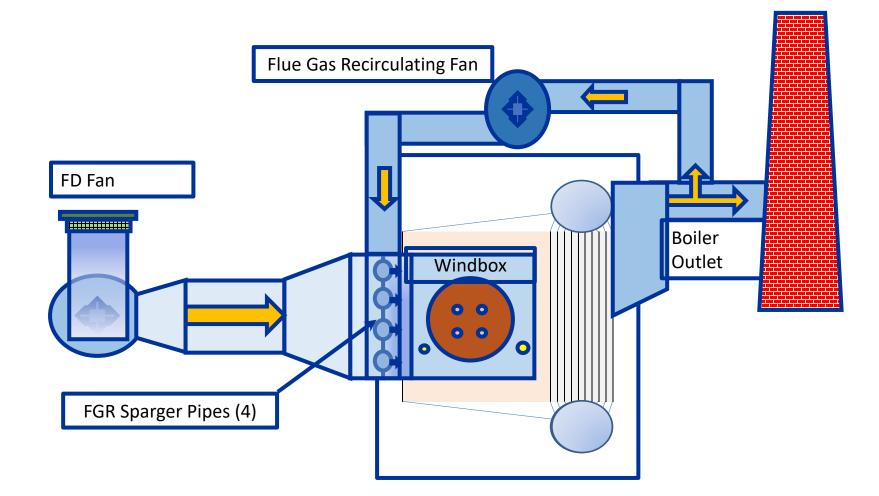
- Applied to Field-erected and Package boilers alike
- Forced FGR Fan and Duct requirements
 - Higher capital and maintenance
 - Added controls
 - Less efficient system
- External FGR will impact balance of heat transfer
 - Lower radiant furnace heat transfer and higher convective heat transfer
 - Lower FEGT out of furnace
 - More mass flow through convective bank
 - When adding more than 10% FGR, a boiler impact study should be performed

Flue Gas Recirculation Rates



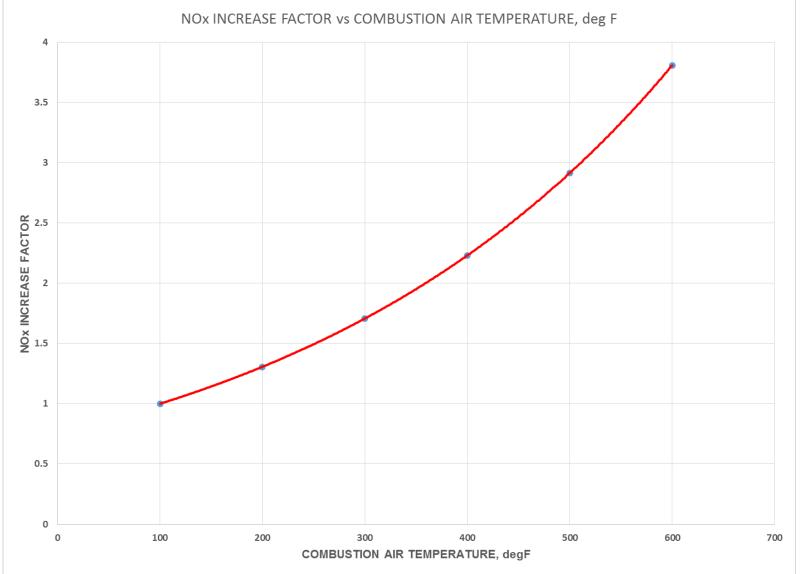
Flue Gas Recirculation Systems

- Induced Flue Gas Recirculation IFGR
 - Uses eduction of FD fan to draft flue gas from boiler outlet
 - Fan sizing could be an issue
 - System design and control of flow can be difficult
 - Great mixing of inert gas with combustion air



Induced FGR System

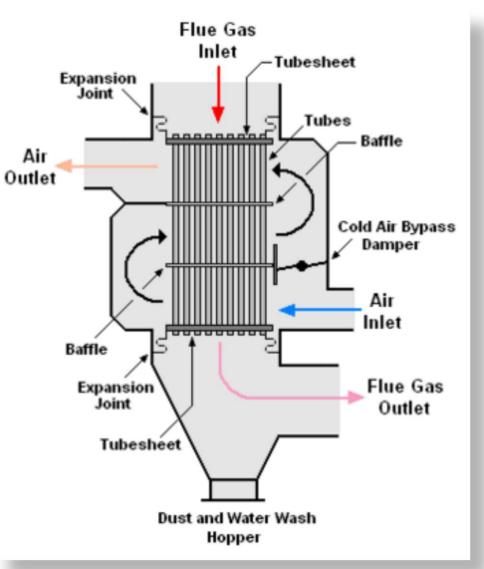
Forced FGR System



Different NOx Reduction Methods – OFA (and Fuel /Air Biasing)

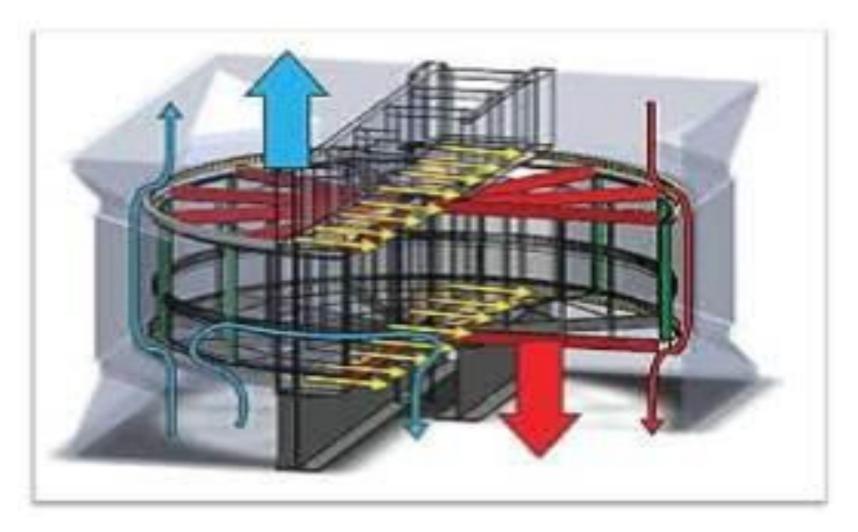
- Applied to Field Erected Boilers with vertical gas path
- Has been unsuccessfully applied to package style / horizontal gas path boilers
- Typically designed for 15-30%
- Generally want 1-2 burner pitch (~6-16') from top row of burners to OFA ports
- Minimum of 2 burner pitch (12-16') from OFA port to nose
- BOOS (Burners Out Of Service)

Effect of Combustion Air Temperature on NOx

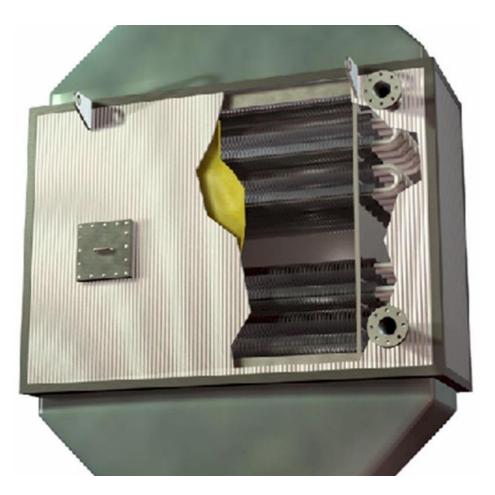


Other Reduction Methods

- Replace Air Preheater with Economizer / Upgraded Economizer
 - Recommended when converting from coal to all gas
 - Improves efficiency and pay for project with fuel savings
 - Allows use of existing fans, even when adding FGR
 - Typically requires a burner change due to lower Register Draft Loss (RDL)
- Tempering water/steam injection
- Post Combustion SNCR / SCR



Tubular Type Air Preheater


Regenerative Type Air Heater

Economizer

- Heat Exchanger
- Increases boiler efficiency
 - 1% for every 10^o increase in feedwater temperature

Different NOx Reduction Methods

FUEL/ TECHNOLOGY	GASEOUS	LIQUID/ SOLID		
OFA	MODERATE	EXCELLENT		
FGR		MODERATE (LFO)/		
FGR	EXCELLENT	POOR (OTHERS)		
STEAM INJECTION		MODERATE (LFO)/		
STEAMINJECTION	EXCELLENT	POOR (OTHERS)		
COMBUSTION AIR				
TEMP REDUCTION	EXCELLENT	POOR-NONE		

Burner / System Solutions

Evaluation can consist of the following:

- Complete new burner systems
 - Conversions can potentially be the least expensive from a full project cost analysis
 - Lowest risk from an emission guarantee standpoint
- Retrofitting existing burner
 - Details on the burner needed
 - May be costly on a full evaluated basis
 - "Condition assessment" of existing firing system

Bob Langstine Regional Sales Manager, Eastern US & Canada

Zeeco Inc. - Boiler Burner Division bob_langstine@zeeco.com Cell: 470-345-7032

